- Details
- Hits: 15813
Department of Physics and technological bases of sensory materials
Head of Department General Researcher, Dr.Sc., Prof. Volodymyr P. Maslov E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
|
Staff
|
|
|
Yuryi V. Ushenin General producer of sensoric devices,
Senior Researcher
Phone: +38 (044) 525-31-23 (ap. 435-5),
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
Glib V. Dorozinsky
Senior Researcher, Ph.D in Technics
Phone: +38(044)525-63-61(ap. 117-5),
E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
|
|||
|
|
|
Anton V. Samoylov
Senior Researcher, Ph.D in Physics
Phone: +38(044)525-63-61 (ap. 107-5),
E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
|
|
Roman V. Khristosenko
Senior Researcher, Ph.D in Physics
|
||
Vasyl O. Morozhenko
|
|||
Fedir M. Vorobkalo
Senior Researcher, Ph.D in Physics
Phone: +38(044)525-50-98 (ap. 246-1),
E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
|
|||
Oksana M. Strilchuk
Senior Researcher, Ph.D in Physics Phone: +38(044)525-50-98 (ap. 246-1), E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
|
|||
Galina M. Androsiuk
|
|||
Oleksander M. Lyapin
Junior Researcher, development of equipment for sensory devices Phone: +38(044)525-63-61 (ap. 107-5) E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
|
|||
Alla B. Lyapina
Junior Researcher, technical support Phone: +38(044)525-13-66 (ap. 122-5), E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
|
|||
Natalia V. Kachur
Junior Researcher, technical support
Phone: +38(044)525-58-30 (ap. 112b-5),
E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
|
|||
Hanna V. Dorozinska
Junior Researcher, technical support
Phone: +38(044)525-63-61(ap. 107-5),
E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
|
|||
Yuryi Yu. Karpiuk
Leading Engineer,
software development for sensory devices
Phone: +38 (044) 525-31-23 (ap. 435-5) |
|||
Nikolas M. Dvornichenko
Engineer,development and configuration of electrical circuitst Phone: +38(044)525-63-61 (ap. 107-5) |
|||
Nadiya O. Burlaka
|
|||
Artem V. Fedorenko Ph.D-student, supporting the department page at the Institute's website
|
Research
Main directions of scientific and scientific-technical activity of the department:
Scientific group №1:Innovative scientific and design-technological solutions for new sensory materials and devices
Leader - Doctor of Technical Sciences, professor Volodymyr P. Maslov
2. Development and implementation photodirectional channel of the range finder for a new generation of armored vehicles sighting system.
3. Development of new radio-transparent materials and technologies for the production of radio-controlled rocket vectors.
4. Development of new masking materials in infrared and radio ranges making proposals for their effective use.
Scientific group №2: High-sensitivity refractometry based on surface plasmon resonance
Leader - Chief designer of sensory devices, Senior Researcher Yuryi V. Ushenin
2. Together with medical and scientific medical establishments of Ukraine, the development and creation of specialized SPR devices and methods of their use for the diagnosis of cancer, immunological and other human diseases.
3. Development and creation of auxiliary devices and equipment for increasing the precision, convenience and reliability of the operation of SPR devices.
Scientific group №3: Investigation of recombination phenomena in atomic and intermetallic semiconductors
Leader - Ph.D., Senior Researcher Oksana M. Strilchuk
Achievements
Most significant achievements:
Employees of the scientific department No.12: Volodymyr P. Maslov, Vadym I. Dunaevsky and Natalia V. Kachur in 2016 received Award of the Cabinet of Ministers of Ukraine for the development and implementation of innovative technologies. Work: "Development and implementation of sensor control information technologies".
Creative team from representatives of scientific department №12 (Volodymyr P. Maslov, Yuryi V. Ushinin, Natalia V. Kachur, Glib V. Dorozhinsky) and NTUU "Igor Sikorsky KPI" with project "Multichannel smoke detector for fire safety system" won a victory in the Sikorsky Challenge 2016 Festival of Innovation Projects and was awarded with a diploma of the winner.
Volodymyr Petrovich Maslov was awarded the title of Honored Inventor of Ukraine in 1995, and in 2011 the creative team under his leadership received the State Prize in the field of science and technology for the development of new materials and devices (on closed topics). International Academy MARTIC "Golden Fortune" in 2018 on the occasion of the 100th anniversary of the Academy of Sciences of Ukraine awarded Maslova Volodymyr Petrovich a medal "People's Choice to Ukrainian Scientists."
Volodymyr P. Maslov is a member of the specialized Academic Council of NTUU "Igor Sikorsky KPI" D26.002.07, as well as a member of the specialized Academic Council of the Institute of Superhard Materials NAS of Ukraine D26.230.01. In the years 2015-16 he became a member of the editorial board of foreign professional journals "American Journal of Optics and Photonics" (ISSN Print: 2330-8486, ISSN Online: 2330-8494, sciencepublishinggroup.com) and Journal of Multidisciplinary Engineering Science Studies (ISSN: 2458-925X, jmess.org). In 2017 he received a diploma of honorary reviewer of the Journal of Nanophotonics (E-ISSN: 1934-2608, spie.org). From 2015, Maslov V. is a member of the Coordinating Council of the target scientific and technical program of the National Academy of Sciences of Ukraine "Research and development on problems of increasing the defense and state security", actively participates in the competitions of this program.
In 2014-2016 Glib Dorozinskyreceived a scholarship of the President of Ukraine, and in 2018 - a scholarship of the Presidium of the Academy of Sciences of Ukraine.According to the results of 2018, the Presidium of the National Academy of Sciences of Ukraine recognized Dorozinsky G.V.the best inventor of the year.
The department conducts active scientific and technical cooperation with NTUU "Igor Sikorsky KPI" . In particular, a joint lab "Didactic" has been created, which includes an employee of the department Vadym I. Dunaevsky.
The most significant scientific and scientific and technical results:
Scientific group №1: Innovative scientific and design-technological solutions for new sensory materials and devices
1. Designed with the financial support of the STCU (project No. 3045, 2003-2006), nanotechnology for the adhesive bonding of precision parts made of glass crystalline nanomaterials with a practically zero linear expansion coefficient (ZERODUR, Schott, Germany).
2. According to the State Order 2011-2012 (the customer - the State Agency for Science, Innovation and Informatization of Ukraine), nanoclay compositions and technologies of precision component connection in instrument making have been developed that provide pre-determined physical and mechanical properties of adhesive seams, for example, thermal conductivity,durability of connection, e.t.c..
3. In the framework of the State target scientific and technical program for the development and creation of sensory science-intensive products for 2008-2012, a study of diagnostic methods and equipment for the control of infrared materials of electronic equipment was conducted.On the example of monocrystalline samples of germanium and sapphire, methods for their control using polarization, spectral, thermal imaging methods and the effect of optical radiation scattering on structural defects and impurities were developed.
4. Developed in the framework of the implementation of the innovative project 2012 (customer - Presidium of the National Academy of Sciences of Ukraine) technologies for determining the state of structures and systems of aviation engineering by non-destructive testing methods by adding optically active impurities to the paint.
The work was continued in 2013 on request of the State Enterprise "Antonov" for the purpose of development and introduction of non-destructive optical method of control of aviation glazing.
5. Since 2015, a complex of works has been carried out, as independently and as cooperation with other institutes of the National Academy of Sciences of Ukraine, aimed at improving the country's defense and security, namely: a new composition of masking cover (paint with special fillers) and a technology of drawing, which reduces the probability, is developed; detection by thermal imaging and radar surveillance devices; developed scientific and technical solutions for optical windows for the protection of optoelectronic devices for armored vehicles; a new germanium photoelectric converter for the range finder of a new generation at a wavelength of 1.5-1.7 µm is being developed and studied; new enlightening and protective diamond-like coatings for germanium optics have been developed.
1. A series of small-scale refractometers "Plasmon" was developed.
2. For the first time, a two-channel immunosensor has been developed for obtaining reliable results of clinical detection of specific anti-Herpes virus Epstein-Barr virus in human serum.The advantage of using the SPR method is to quickly obtain information in real time about the etiological pathogens of the disease, the absence of the need for labeled reagents and the automated analysis.
3. For the first time, the spatial structure was studied by the SPR method and the original model of formation of electro-polymerized polyaniline films was proposed on the basis of study of their optical parameters - dependences of the refractive index and the coefficient of extinction on the thickness.
4. The kinetic concentration characteristics of the films of calixarenes (tert-butyl-calix [4,6,8] arenes (C [4] A, C [6] A, C [8] A) and tetra-pentyl-calix [4] resorcinolarene(C [4] Re)) in interaction with lethal molecules of ethanol, pentanol and isopropanol by SPR methods and interference spectroscopy of reflected light.
5. It was first proved the possibility of constructing a gas sensor of alcohols with a digital fixation of the change of the RGB components of the array of interferentially colored sensitive calixarene films;The optimization of the sensor, as well as the recognition procedure using statistical methods and the Hopfield neural network, was performed.
6. For the first time, it has been shown that the change in peripheral blood peripheral blood glucose levels may correlate with the cellular density of glium, reflecting the degree of malignancy of these tumors, and also it has been experimentally proved that changes in the parameters of SPR in blood cells in the experimental patients may be one of the factors for predicting the rate of progression of glium in the postoperative period, whichwill allow the timely use of preventive methods in relation to recurrence of gliomas.
7. For the first time, the possibility of detecting antibody-induced leukemia virus in serum and serum of milk of diseased animals with the help of an immunosensor based on SPR is shown.It has been proved that the analysis is more sensitive than the traditional method of RID.
8. It was first established that the increase in the wavelength of the excitation of the surface plasmon resonance from 650 nm to 1200 nm can reduce the error of measurement of the refractive index of the analyte with the Plasmon series in 7 times: from 21 · 10-5 to 3.5 · 10-5 and increases the sensitivity in 2.4 times: from 5.2 V / deg to 12.5 V / deg, which is explained by the greater symmetry and narrowness of the measured reflection characteristic R (θ) in the vicinity of the minimum for larger values of wavelengths.
9. The technology of the sensitive element of the devices "Plasmon" series has been improved, which reduced the absolute error of measuring the refractive index of the analyte in 5 times: from ± 0.7 · 10-5 to ± 0.12 · 10-5 and increased the sensitivity of the device in the mode of measurement Slope 1.5 times: from 12.5 V / deg to 17.6 V / deg by reducing the micro-rigidity of the surface of the sensitive element 2.5 times: from 2 nm to 0.8 nm due to the improvement of the technology of the sensing element (Patent of Ukraine for invention No. 108149 dated March 25, 2015).
10. The design of the sensitive element of the device has been improved, which increased the sensitivity of the device "Plasmon-6" in 5 ... 30 times (depending on the type of gaseous analyte) due to the deposition at an angle of 75 ° between the normal to the substrate of the sensitive element and the direction to the evaporator of the additional layer of porous silicon oxide film, which is explained by an increase in the porosity of the surface (Patent of Ukraine for Utility Model No. 87271 dated January 27, 2014).
11. At the first time, a method for controlling air pollution by the PPR method was proposed, which allows measuring according to the established method of concentration of methanol air mixtures (Patent of Ukraine for Utility Model No. 102069 dated 10.12.2015).
12. For the first time, the method of determining the index of refraction of photopolymerization-capable adhesive compositions during polymerization has been developed and implemented, and the optimal composition of optical components has been determined (Patent of Ukraine for Utility Model No. 106142, dated 17.02.2014, published April 25, 2016, Bull No. 8);
13. For the first time a new method of determining the changes in the refractive index of synthetic motor oils during their operation was developed (Patent of Ukraine for Utility Model No. 102049 dated 10.12.2015);
14. For the first time a specialized multichannel smoke detector was developed and proposed, which allows to distinguish the effects of temperature, dust particles, and combustion products, resulting in its lack of false triggering (Patent of Ukraine to Utility Model No. 91922 dated July 25, 2014).
1. For the first time, data on the interaction of deep centers with defects created by external factors have been determined, and the most important recombination parameters (energy, electron and hole grabber cross sections, the mechanism of recombination, the circuit of electronic transitions) of many electrically active impurities, as well as structural defects and various complexes have been determined, which made it possible to createa general picture of the course of non-equilibrium processes in deep centers.
2. As a result of investigations of the recombination properties of thermodefects and oxygen complexes in silicon, new data on the structure and characteristics of these complexes were obtained, the statistics of recombination on them, the effect of heat treatment at different temperatures on their concentration and the lifetime of current carriers determined by these complexes, the causes of the thermalinstability of silicon.
3. The gating effect of carbon atoms on the reduction of the lifetime of current carriers in silicon has been established, so that heat-treated silicon crystals containing carbon exhibit rather high lifetimes of current carriers.
4. For the first time, the interconnection between the dependences of the maximum of the dislocation photoluminescence band and the paramagnetic component of the magnetization on the degree of deformation in oxygen-containing silicon is due to structural transformation.
5. For the first time, the nature of a number of deep centers of gallium arsenide has been established, the influence of thermal processing, deformations and structural imperfections on the spectra of photoluminescence of gallium arsenide crystals, the influence of electron, proton and neutron irradiation and subsequent annealings on their photoluminescence have been studied in detail. New defective centers of luminescence were discovered, their nature, structure and kinetics of formation, interaction with copper atoms and antistructural EL2 defects were discovered, coefficients of diffusion of some impurities and radiation-created defects were determined.
6. The influence of non-stoichiometry and carbon atoms on the luminescence characteristics of gallium arsenide crystals and the involvement of non-stoichiometric defects in recombination processes are established.
7. A detailed study of the low-temperature (T = 4.2 K) exciton photoluminescence of gallium arsenide crystals made it possible to clarify the statistics of excitonic recombination and to determine the probability of binding of free excitons to the membrane acceptors and donors.
9. It has been established that gamma-irradiation of Cd1-xZnxTe crystals leads to changes in the concentrations of radiative centers, the transformation of old centers, the formation and introduction of new centers of radiation and non-radiation recombinations, which is due to the creation of vacancies of cadmium and other defects in the lattice.
10. It was established that the pretreatment of γ-irradiated crystals Cd1-xZnxTe by powerful laser radiation leads to a significant decrease in the intensity of radiation-stimulated luminescence bands, which is associated with the peculiarities of interaction between radiation and laser-stimulated defects.
11. For the first time a device was created for the investigation of coherent thermal radiation of resonator semiconductor structures, in which the thermal radiation of the structure is introduced into the spectrometer by means of the calculated and produced IR-phonon. It is shown that the effect of low-frequency amplitude modulation of the total spectrum can be used for the analysis of mechanical stresses in a semiconductor structure.
12. The scientific and technical decision on improving the characteristics of infrared lenses and information capabilities of the entire device is developed and researched.
13. New thermal imaging methods for diagnosing human circulatory problems in diabetes, Raynaud's syndrome and oncological diseases have been developed. These methods are implemented in medical institutions of Ukraine and marked by the Award of the Cabinet of Ministers of Ukraine.
Developments of group №1
It is proposed to disguise both passive and active elements of the defense of military equipment
|
Together with the Institute of Surface Chemistry named after. O.O. Chuika of the National Academy of Sciences of Ukraine developed a new form of masking coating (paint with special fillers) and the technology of drawing, which reduces the likelihood of detecting both thermal imaging and radar surveillance. |
Experimental samples of protective windows
Simulation work of protective windows in the optical circuit of device
|
Together with the Institute for Problems of Strength G.S. Pisarenko of the National Academy of Sciences of Ukraine developed scientific and technical solutions to optical windows for the protection of optoelectronic devices of armored vehicles. The works were carried out in the interests of NVI "Photoprilad" (Cherkassy) |
Photo converter in assembly
Photoconverter scheme where: 1- semiconductor germanium n-type, 2 - semiconductor germanium p-type, 3- p-n transition, 4 - high-tech passivation layer ZnSe, 5 - metal contacts, 6 - electric wires. One of the differences in the developed photoconductor is the first proposed use of ZnSe for passivating the working surface of the device
|
Together with Dr.sc.ing., Prof. V.V.Tetorkin and Sen.Res. A.V. Sukachem new germanium photoconverter for the range finder of a new generation at a wavelength of 1.5-1.7 nm is being developed and studied by Sukachev. Works are executed on request of the Institute of Single Crystals of the National Academy of Sciences of Ukraine |
Together with DKNVP “Kvarsyt”, a new technical solution for the creation of veneer based on quartz nanoceramics with improved performance has been developed. Planned implementation of the development in 2019
|
Improvement of technology for the production of radio-transparent radio-controlled rocket fuses. The work is carried out in the interests of the DKNVP “Kvarsyt”. |
The general view of the thermal imaging panoramic complex PNK-6, located on the tower of the tank
|
Together with the Institute of Superhard Materials named V.M. Bakul NAS of Ukraine developed new enlightening and protective diamond-like coatings for germanium optics of PNK-6 device. The method of control of technological devices for illumination of large-sized parts is developed |
Developments of group №2
The most significant scientific and technical developments:
1. A series of small-scale refractometers based on the phenomenon of surface plasmon resonance and auxiliary equipment to them is developed:
|
Portable one-channel autonomous SPR refractometer "Leukoplazm-2". |
|
Portable single-channel SPR refractometer "Plasmon-5".Designed for environmentally friendly environmental monitoring.The operating range of measuring the refractive index of the test substance from 1.0 to 1.43.Working wavelength of laser radiation 635 nm. |
|
Portable two-channel SPR refractometer "Plasmon-6".Designed for rapid diagnosis of human retroviral diseases and environmental monitoring.The operating range of measuring the refractive index of the test substance from 1.0 to 1.43.Working length laser radiation waves of 650 nm. |
|
Portable two-channel SPR refractometer "Plasmon-71" with high sensitivity, designed to study substances with high optical density (refractive index more than 1.43).Has the lowest detection limit among the Plasmon series devices.The measuring range is from 1.0 to 1.5. Working wavelength of laser radiation 850 nm. |
|
Portable two-channel SPR refractometer "Plasmon-11" with high sensitivity.This device is different using a quartz light polarization modulator.Thus, the instrument uses a phase measurement method that is more sensitive than the normally used amplitude.Designed for environmentally friendly monitoring of the environment.The operating range of measuring the refractive index of the test substance from 1.0 to 1.46.Working wavelength of laser radiation 650 nm. |
|
Portable two-channel semi-automatic SPR refractometer "Plasmon-9". Designed for non-invasive diagnosis of human brain glioma and genetic studies.It has the equipment for automatic draining of measuring cells and the analyzer pumping system. The laser wavelength of laser radiation is 650 nm. |
|
Portable, small, 8-channel peristaltic pump "Plasmon-Pump-8".It is intended for pumping the test substance through a measuring cell of a refractometer series "Plasmon" with speeds from 1 to 500 μl/min. |
|
Termobox for portable refractometers of the "Plasmon" series.It is intended for stabilization of temperature regimes of refractometers of a series of "Plasmon" and auxiliary equipment.Temperature range from room temperature from -5 K to +10 K with temperature deviation ± 0.5 K. |
Developments of group №2
The most significant scientific and technical developments:
1. A non-destructive method for determining the concentration of shallow impurities in semi-insulating GaAs is developed on the boundary luminescence spectra, and gauge dependencies have been obtained to determine their content in crystals of semi-insulating GaAs;
2. The method of selection of crystals Cd1-xZnxTe, suitable for creation on their basis of high-quality detectors of ionizing radiation is developed.
Investigation of semiconductor magneto-optical resonator structures in the medium and far IR range
At present, it is impossible to imagine a branch of science and technology, which would not be used infrared (IR) systems and devices. In this spectral range there are absorption lines of many gases and liquids, which allows to analyze the substance for the needs of industry, forensics, ecology, etc. Registration of thermal infrared radiation has a wide range of applications from medicine to military affairs. Therefore, the creation of new, more effective IR devices and elements, the development of technologies and the search for new physical principles of their functioning is an urgent task.
Magneto-optical resonator structures (MOSS) are promising objects for the creation of optical devices. Their optical properties are determined not so much by the substances from which they are made, but by their structure. The use of magneto-optical materials in their composition allows us to create a new generation of optical devices controlled by a magnetic field: the systems of information display and transmission, sources and sensors of radiation, magneto-optical modulators and shutters, etc.
The department conducts studies on the influence of the magnetic field on the optical characteristics of the MOSS. Their purpose is to create newly managed IR devices based on the MOS for the needs of optical instrumentation of a wide range of applications. The studies are carried out in the spectral range of 2-20 microns in the magnetic field intensity up to 25 kE.
Photo of the experimental installation
Research results:
1. The theory of interaction of radiation with resonator semiconductor structure and the method of calculation of optical characteristics of MORS using matrices 2х2 and 4х4 have been developed. The theory is not limited to the linear approximation of a magnetic field, as a result of which it can be used to calculate the optical parameters of doped semiconductor layers and structures in the absorption region on free carriers of current.
2. The dependence of the transmission, reflection and thermal radiation of the MORS on the magnetic field is investigated theoretically and experimentally.
Theoretical 3D graph of transmission spectra (ZnSe / KBr)3 / InSb / (KBr / ZnSe)3 MORS in a magnetic field.
Theoretical 3D graph of transmission spectra (ZnSe / KBr)4 / InSb / (KBr / ZnSe)6 MORS in a magnetic field
Experimental spectra of thermal emission of n-InAsMORS in a magnetic field
3. A series of infra-red controlled optical devices based on MOSS are proposed:
- The current model of the narrowband infrared radiation source with radiation lines of 7.71 μm and 10.55 μm for the detection of methane CH4 and carbon dioxide CO2.
The current model of the narrowband infrared radiation source
- narrowband infrared radiation source with dynamically controlled intensity.
- a narrowband infrared radiation source with the possibility of dynamically rearranging the spectral position of the radiation line.
Spectral shift of the thermal radiation line (ZnSe / KBr)4 / InSb / (KBr / ZnSe)10 MOSS in the magnetic field
- Infrared radiation sources with controlled 2D intensity distribution, which can be used as infrared test objects, scene simulators and thermal fields.
Infrared source with controlled spatial radiation field. (A) - magneto-optical n-InSb resonator, (b) - dependence of the intensity of thermal radiation (TV) on thickness and magnetic field; (c), (d), (e), (f) - surface distributions of TV at different values of the magnetic field
Two-colored infrared source with controlled spatial radiation field. (A) - n-InSb magneto-optical resonator with heterogeneous doping of n-type: (b), (c) - distribution of heat radiation surface. Constants reflect the spectrum of the source.
Thermographic research in the field of health care
Since the discovery of infrared radiation, scientists have carried out a large number of thermographic studies devoted to studying its nature from the surface of biological objects (BO) and the use of these features for the diagnosis of various pathologies.
The method of medical ICT is a non-invasive and non-radioactive diagnostic tool for monitoring and analyzing the physiological functions of BP. This unique technology is used to detect and locate thermal anomalies. Almost all pathological conditions, temperature change is the first symptom that indicates a violation in the body. Temperature reactions due to its universality, arise in all types of diseases: bacterial, viral, allergic, neuropsychic and others.
Below are the results of thermographic studies of the mammary gland in various pathologies
The high efficiency of the method of remote infrared thermography in the diagnosis of breast diseases has been demonstrated.
The non-invasiveness and simplicity of infrared thermography can be used repeatedly without harming the patient's health, detecting diseases in the mammary glands in the early stages, followed by the diagnosis based on the results of clinical trials.
Complex diagnostics with the use of thermography increases the informative and reliable diagnostic search.
Thermographic studies for the diagnostics of semiconductor devices
To study the causes of noise from one edge of the matrix of a television camera, a thermographic examination of two television cameras was performed in working condition. There has been an assumption of the influence of temperatures on the individual elements of the television camera (presumably this is due to the work of the control and reading circuitry, which is directly located and connected to a common block by the CCD-matrix), which explained the appearance of noise on one side of the matrix.
Results of the study of the matrix of sensitive elements of the camera Novus-130 BH
The results of the study of the camera Novus-130 BH
As can be seen from the thermal imaging of the Novus-130 BH camera, there is the temperature heating of individual elements of the television camera to 57,17 0С. And what exactly these heated elements are from one (in this case, from the left) side of the body of the television camera. This statement explains the cause of the camera noise from one (in this case, from the left) side of the camera matrix.
Equipment
Equipment and installations:
1. Technical equipment
1.1. Vacuum type units ВУП-5А
1.2. The machine for drilling;
1.3. Muffle oven SNOL TermoPro 601, Tmax = 1373 К.
1.4. Oven for annealing samples Memmert, Tmax = 493 К.
1.5. Distiller ЕД-5.
1.6. Compressor УК-40-2М.
2. Measuring equipment
2.1. SPR refractometers "Plasmon" series ( N =1,0 … 1,5 RIU; δNmax = ±0,00005 RIU) .
2.2. Optical refractometer RL-3 ( N =1,33 … 1,70 RIU; δNmax = ±0,0005 RIU) .
2.3. Spectrophotometer СФ-46 (λ = 190 … 1100 nm, δλmax = ±2 nm).
2.4. Spectrophotometer MAPADA UV-1600 (λ = 190 … 1100 nm, δλmax = ±2 nm).
2.5. Fourier spectrometer Infralum FT-801 (k = 500 … 5000 сm-1, δk = 1 сm-1).
2.6. Medical thermal imaging camera (λ = 2 … 5,3mkm, δТmax = ±0,1 К).
2.7. Ultrasonic flaw detector (τ = 6 … 1000 mкs., δ τ max = ±0,025 mкs).
2.8. Solid measure ( HRC=(20-70)±2; HB=(90-450)±10; HV=(240-940) ±15 ).
2.9. Precursor scales ВЛР-20Г (m = 0 … 100 mg, δmmax = ±0,1 mg).
2.10. Optical microscope МИМ-7.
2.11. Goniometer Г-5 (θ = 0 … 360 deg., δθmax = ±1 arc.sec.).
2.12. Goniometer Г-5М (θ = 0 … 360 deg., δθmax = ±5 arc.sec.).
2.13. Installation for monitoring the content of impurities and defects and their local distribution in semiconductors A3B5 and A2B6 by the luminescent method.
Projects
Scientific group №1:Innovative scientific and design-technological solutions for new sensory materials and devices
2.1.7- Розроблення і створення діагностичних методів і устаткування для контролю інфрачервоних матеріалів електронної техніки (2008-2012).
143/18-10 - Створення інноваційного середовища для комерціалізації та трансферу нанотехнологій у бізнес в Україні (2010-2013).
1806-12 - Моніторинг комерційної привабливості розробок, створених під час виконання Державної цільової науково-технічної програми «Нанотехнології та наноматеріали»(2010-2013).
12/07 - Вибір найбільш комерційно привабливих розробок, створених за Державною цільовою науково-технічною програмою «Нанотехнології та наноматеріали» для представлення їх на Технологічній зустрічі «Нанотехнології та наноматеріали для бізнесу та виробничої сфери» (2010-2013).
ДЗ/478-2011 - Розроблення та впровадження наноклейових композицій та технологій з’єднання прецизійних деталей у приладобудуванні (2011-2012).
07 – 253 – 13 - Розробка методики для неруйнівного контролю та виготовлення і поставка комплекту обладнання, що дозволяє відрізнити авіаційне орієнтоване скло (АО 120) від неорієнтованого (СО 120) (2013).
1776 - Розробка алгоритмів для покращення зображень в інфрачервоному діапазоні (2013).
№23/27-14 - Вивчення оптичних та електрофізичних характеристик наноклеїв до умов їх застосування (2014).
1.1.11/27 – Розроблення і створення технологій вирощування низькотемпературних наноструктурних сполук кремнію та нанокристалічних матеріалів з низьким коефіцієнтом термічного розширення та впровадження у виробництво мікроелектронних сенсорів, оптичних елементів для авіаційно-космічного приладобудування (2014-2016).
2.1.5/18,27 - Розроблення і створення діагностичних методів і устаткування для контролю інфрачервоних матеріалів електронної техніки та нанокристалічних матеріалів (2014-2016).
9/18 - Розроблення та впровадження комплексу базових технологій відновлення, регенерації, модернізації та виготовлення елементів систем спостереження та прицілювання бронетанкової техніки (2014-2016).
1522.3 - Розробка нових адгезивів та технологій адгезійних з’єднань (2014-2016).
245 - Розробка методики визначення показника заломлення алмазоподібних плівок та оцінки рівня внутрішніх напружень (2016).
12/18 - Розробка схемних конструкторсько-технологічних рішень та моделювання каналу приймання лазерного випромінювання з довжиною хвилі 1,5-1,7 мкм (2017-2018 ).
ТД 21/12 - Створення та впровадження сучасних нанокристалічних матеріалів з низьким коефіцієнтом термічного розширення для виробництва радіопрозорих деталей спеціальної техніки та оптичних систем (2018-2020).
ТД 22/12 - Створення та впровадження перспективних стаціонарних та портативних систем для оперативної діагностики небезпечних інфекційних захворювань та експрес-аналізу якості питної води в польових умовах (2018-2020).
Scientific group №2: High-sensitivity refractometry based on surface plasmon resonance
1.1.27 - Модифікація оптоелектронних аналізаторів імунного складу біологічних рідин та контролю взаємодій біологічних молекул з метою підвищення чутливості та інформативності". Програма "Розробка технологій та організація виробництва напівпровідникових мікросенсорів, електронних приладів та систем на їх основі для екологічного моніторингу та енергозбереження (2005).
3.16/27-Розробка панорамної системи біосенсорів для масових досліджень дії фармацевтичних препаратів на людський організм (2006).
3.24/27 - Розробка автоматизованої біосенсорної системи діагностики вірусних захворювань великої рогатої худоби (2006).
1.3.4/27 – Розроблення і створення сенсорних систем біоплазм для діагностики, лікування та профілактики серцево-судинних, інфекційних та нейрологічних хвороб. Державна цільова науково-технічна програма розроблення і створення сенсорних наукоємних продуктів на 2008—2012 роки.
1.3.7/27 - Розроблення і створення аналітичних систем експрес-діагностики в біотехнології та ветеринарії. Державна цільова науково-технічна програма розроблення і створення сенсорних наукоємних продуктів на 2008—2012 роки.
044515- “Rapid SPR for parallel detection of pathogens in blood” Start date of project: 01.01.2007 Duration: 3.5 years (2007-2009)
3.7/27 - Розроблення і створення аналітичних систем експрес-діагностики в біотехнології та ветеринарії і забезпечення впровадження у виробництво високочутливого біосенсора діагностики захворювань великої рогатої худоби та птиці на лейкоз і туберкульоз безпосередньо у сільських господарствах (2008-2017).
3.4/27 – Розроблення і створення сенсорних систем біоплазм для діагностики, лікування та профілактики серцево-судинних, інфекційних і нейрологічних хвороб та забезпечення впровадження у виробництво портативного аналізатора плазми крові для експрес-аналізу системи кровообігу на початкових стадіях захворювань людини (2008-2017).
1.3.3/27 – Розроблення і створення сенсорних систем біоплазм для діагностики, лікування та профілактики серцево-судинних, інфекційних і нейрологічних хвороб та забезпечення впровадження у виробництво портативного аналізатора плазми крові для експрес-аналізу системи кровообігу на початкових стадіях захворювань людини (2014-2016).
1.3.5/27 – Розроблення і створення аналітичних систем експрес-діагностики в біотехнології та ветеринарії і забезпечення впровадження у виробництво високочутливого біосенсора діагностики захворювань великої рогатої худоби та птиці на лейкоз і туберкульоз безпосередньо у сільських господарствах (2014-2016).
51/27/1 - Дослідна експлуатація та метрологічне забезпечення діагностичного приладу на основі поверхневого плазмонного резонансу для діагностики вірусу герпесу. Створення експериментального зразка діагностичного приладу на основі поверхневого плазмонного резонансу для діагностики вірусу герпесу (2014-2016).
51/27/2 - Імуносенсорний експрес-аналізатор на основі поверхневого плазмонного резонансу для кількісного визначення маркерів системи гемостазу для медицини і ветеринарії: метрологічне забезпечення та дослідна експлуатація. Створення експериментального зразка біосенсора ОНКОПЛАЗМ для діагностики гліом головного мозку (2014-2016).
IZ73Z0-152661 - Виготовлення біосенсорів за допомогою полімеризації у плазмі (2014-2017).
ТД 12/12-Створення та впровадження високочутливого портативного аналізатора плазми крові для експрес-діагностики людей на початкових стадіях захворювань та автоматизованого комплексу для експрес діагностики та моніторингу лікування хворих зі злоякісними гліомами головного мозку (2018-2020)
ТД 17/12-Створення та впровадження серії високочутливих інтегрованих приладів для проведення експресної діагностики захворювань в ветеринарії на найнебезпечніші вірусні і генні хвороби з метою покращення якості продукції тваринництва (2018-2020)
51/27/1 -Високопродуктивний спектрометр ППР з сенсорним чипом у форматі мікромасиву (2018-2020).
Scientific group №3: Investigation of recombination phenomena in atomic and intermetallic semiconductors
2.1.10 – Розроблення і створення комплексу експресного контролю параметрів матеріалів для детекторів іонізуючого випромінювання.Державна цільової науково-технічної програми розробка і створення сенсорних наукоємних продуктів (2008 – 2017).
ІІІ-8-11 - Розробка фізичних і фізико-технологічних засад створення сенсорів та сенсорних масивів для моніторингу довкілля на основі досліджень електронних та іонних процесів в напівпровідникових матеріалах і структурах (2011-2015).
ІІІ-41-12 - Фізичні та фізико-технологічні аспекти створення сучасних напівпровідникових матеріалів і функціональних структур для нано- і оптоелектроніки. Назва підрозділу: “Вивчення впливу екстремальних зовнішніх факторів на властивості нанорозмірних структур та наноструктурованих матеріалів з метою прогнозування їх надійності” (2012-2016).
ІІІ-8-06 – Розробка нових підходів для створення перспективних наноструктурованих матеріалів, технологічних та аналітичних багатофункціональних систем на основі напівпровідникових та органічних сполук (2006-2010).
ІІІ-41-07 - Фізичні та фізико-технологічні аспекти створення і характеризації напівпровідникових матеріалів і функціональних структур сучасної електроніки (2008-2011).
№8 - Механізми впливу технології отримання і зовнішніх факторів на властивості напівпровідникових структур і функціональних елементів сенсорних систем на їх основі (2003-2005).
1.4.8/27 - Розроблення і створення апаратури безконтактного контролю розподілу температури у високотемпературних технологічних процесах та її апробація в металургійній та авіаційній промисловості (2003-2005).
2.16.27 - Розробка люмінесцентної методики контролю локального розподілу домішок і дефектів та їх впливу на властивості в складних сполуках А3В5 та А2В6. Науково-технічна програма Мінекономіки "Розробка науково-технічних методів, засобів і автоматизованих систем контролю параметрів напівпровідникових матеріалів, структур і приладів" (2000-2005).
№ 8 - Фізичні та фізико-технічні основи створення напівпровідникових матеріалів і функціональних елементів для систем сенсорної електроніки” (2001-2002)
ІІІ–08–11 - Нові технології виготовлення матеріалів і наноструктур, комплексні дослідження та створення новітніх елементів сенсорної техніки (2014).
ІІІ–41–12 - Фізичні та фізико-технологічні аспекти створення сучасних напівпровідникових матеріалів і функціональних структур для нано- і оптоелектроніки (2014).
2.1.7/27 - Розроблення і створення комплексу експресного контролюпараметрів матеріалів для детекторів іонізуючого випромінювання (2015-2016).
ІІІ–41–12 - Фізичні та фізико-технологічні аспекти створення сучасних напівпровідникових матеріалів і функціональних структур для нано- і оптоелектроніки (2015-2016).
ІІІ–08–16 - Нові технології виготовлення матеріалів і наноструктур, комплексні дослідження та створення новітніх елементів сенсорної техніки (2016 ).
9/18 - Розроблення та впровадження комплексу базових технологій відновлення, регенерації, модернізації та виготовлення елементів систем спостереження та прицілювання бронетанкової техніки (2016) .
1522.3 - Розробка нових адгезивів та технологій адгезійних з’єднань (2016) .
Current Projects
ТД 21/12 - Creation and introduction of modern nanocrystalline materials with low coefficient of thermal expansion for production of radio-transparent parts of special equipment and optical systems.
ТД 22/12 - Creation and implementation of promising stationary and portable systems for operative diagnosis of dangerous infectious diseases and rapid analysis of the quality of drinking water in the field.
ТД 12/12 - Creation and implementation of a highly sensitive portable blood plasma analyzer for rapid diagnosis of people at initial stages of the disease and an automated system for express diagnosis and monitoring of treatment of patients with malignant brain gliomas.
ТД 17/12 - Creation and implementation of a series of highly sensitive integrated devices for the rapid diagnosis of diseases in veterinary medicine for the most dangerous viral and gene diseases in order to improve the quality of livestock products.
ІІІ–08–16 - Physical-chemical phenomena in semiconductors, carbon nanocomposites and heterostructures, influence on them of manufacturing technology and external actions.
ІІІ–10–18 - Development of new methods for the formation of functional semiconductor materials and instrumental structures.
ІІІ–41–17 - Physical and physical-technological aspects of the creation of modern semiconductor materials and functional structures for nano- and optoelectronics.
51/27/1 - High-performance surface plasmon resonance spectrometer with sensor chip in the format of micromassage.
Collaboration
І. Research institutes
1.Romodanov Institute of Neurosurgery AMS of Ukraine (Diagnosis and monitoring of treatment of brain tumor diseases)
2. State Scientific-Control Institute of Biotechnology and Strains of Microorganisms (Diagnosis of diseases in veterinary medicine for the most dangerous viral diseases)
3. Palladin Institute of Biochemistry NAS of Ukraine (Investigation of homeostasis markers for express control of thrombophilia)
4. Institute of Microbiology NAS of Ukraine (Epstein-Barr virus study and vesicular stomatitis)
5. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology NAS of Ukraine (Investigation of antitumor activity of plant polyphenols)
6. Institute of Molecular Biology and Genetics NAS of Ukraine (Investigation of mutations in human DNA)
ІІ. Universities
1. National Technical University of Ukraine "Igor Sikorsky Kiev Polytechnic Institute" (Research in the field of environmental monitoring)
2. Ivan Ogienko Kamenets-Podilsky Pedagogical University (Investigation of nano-profile structures in sensory devices)
3. Cherkasy State Technological University
(Investigation of the influence of electron-beam processing of dielectrics and semiconductors surfaces on their functional properties in sensory devices)
Publications
2019
|